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We present extensive numerical studies to determine the phase diagrams of cubic and hexagonal blue phases
in an electric field. We confirm the earlier prediction that hexagonal phases, both two and three dimensional,
are stabilized by a field, but we significantly refine the phase boundaries, which were previously estimated by
means of a semianalytical approximation. In particular, our simulations show that the blue phase I–blue phase
II transition at fixed chirality is largely unaffected by electric field, as observed experimentally.
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I. INTRODUCTION

The blue phases �BPs� of chiral molecules provide spec-
tacular examples of soft solids formed via a spontaneously
occurring network of disclination lines within a cholesteric
background �1�. All BPs arise close to the transition between
the cholesteric and the isotropic phase; in at least two cases
�BPI and BPII� the disclination network forms an ordered
�cubic� lattice. �A third, BPIII, is thought to be amorphous
�1�.� When an electric field is applied, several new blue
phase disclination lattices have either been observed or theo-
retically predicted. Two of these have hexagonal symmetries
and have been named H2D and H2D, respectively: these have
first been predicted theoretically �2,3� and subsequently seen
experimentally �4�. A further BP appearing in a field, BPX,
has tetragonal symmetry: it was found experimentally in the
1980s �5� and its structure recently possibly revealed by
simulations �6�. For a review of experimental results on blue
phases, especially in electric fields, the interested reader
should consult Refs. �7,8�.

In the last few years, BPs have emerged as very promising
device materials with fast �submicrosecond� and tunable
color response. This increase in technological potential
comes from recent remarkable experiments �9–11�, which
managed to stabilize BPs over a temperature range of 50 K,
compared to ranges of about 1 K previously �1�. However,
for their potential to be fully realized, our understanding of
BPs needs to become as quantitative as the one we have for
conventional nematic liquid crystals.

In particular, our theoretical knowledge of the phase dia-
grams of BP-forming liquid crystals in the presence of an
applied field is currently quite dated. It relies on the seminal
papers by Hornreich et al. �2,3�, which are however based
on an approximation �to allow semianalytical progress�: the
tensorial liquid crystalline order parameter is represented
by a Fourier series comprising harmonics of relatively high
order but only corresponding to the m=2 helicity mode,
which eliminates the dependence on one of the elastic con-
stants �see Refs. �12,13� for details�. These papers have pro-
vided a very useful first theory of blue phases, but it has
become clear recently that their quantitative predictive power
is somewhat limited �6,12,14,15�. For instance, within these
approximations, the phase diagram at zero electric field

predicts that BPII and BPI appear in the wrong order upon
varying the molecular chirality �12� �cf. experimental phase
diagrams shown in, e.g., Ref. �8��. At the same time, these
theories were also unable to account for anomalous electros-
triction of BPI �6,16,17�. Recent simulations have shown that
these shortfalls are a drawback of the approximations em-
ployed and not of the underlying Landau–de Gennes mean-
field free energy �18�. The latter is the starting point for
describing the thermodynamics of BPs and when handled
directly gives good semiquantitative agreement with the ex-
periments. The simulations of Refs. �15,19� use a lattice
Boltzmann �LB� method which can address the full dynam-
ics of the system including fluid flow. Recent work favors
instead a hybrid method �20,21� in which an LB code for
fluid degrees of freedom is coupled to a conventional finite
difference code for the order parameter �this method was
recently used in binary fluids as well �22��. In the current
work, we address only thermodynamic steady states, in
which case it is convenient to switch off the fluid motion and
use only diffusive relaxation to find local minima of the free
energy. �We can then compare these minima to construct the
phase diagram.� As well as being directly comparable with
experiments, the resulting phase diagrams form a secure
foundation for future hydrodynamic simulations on the same
systems using the hybrid LB approach �21�.

Our program in this paper is therefore to update the phase
diagrams for blue phases in an electric field by computer
simulation of the governing equations derived from the
Landau–de Gennes free-energy functional �detailed below�.
We find that the existing semianalytical approximations
�2,13,23� are able to capture rather well the qualitative phys-
ics of the problem. In particular, we confirm that an interme-
diate electric field stabilizes the two previously proposed
hexagonal phases, H2D and H3D. However, our simulations
show that the blue phases, whether cubic or hexagonal, ex-
tend to regions of significantly lower chirality than predicted
by the semianalytical approximation; this is in agreement
with the trend which was observed in phase diagrams of BPs
without any electric field �14,15�. Furthermore, we also re-
solve which of the cubic blue phases, BPI or BPII, is stable
at any given point in the phase diagram. Hence, we find that
the Landau–de Gennes free energy leads to a near-horizontal
phase boundary in the field-temperature plane in agreement
with experimental observations �24�.
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It is important to note that, while in this work we focus on
a continuum description of blue phase via a Landau–de
Gennes free energy, there also exist simulation studies of
individually resolved molecules described as spherocylinders
interacting with a coarse-grained potential �25�, which man-
aged to stabilize blue phases. This approach is extremely
interesting; however, the length and time scales accessible
within it are significantly smaller than the ones we can cover
with our approach and it would be unfeasible to compute a
phase diagram with this method.

This paper is organized as follows. In Sec. II we discuss
the Landau–de Gennes theory which leads to the continuum
equation of motion which we numerically solve. In Sec. III
we present the numerical results, i.e., the phase diagrams in
the chirality-temperature and temperature-field planes, and
we quantitatively compare them with the ones predicted via
semianalytical approximations. Finally, Sec. IV contains our
discussion and conclusions.

II. LANDAU–DE GENNES THEORY

A. Equations of motion and free energy

The nematodynamic description of liquid crystals, often
named after its inventors as the Erickson-Leslie-Parodi ap-
proach, uses a fixed-magnitude �headless� unit vector field as
order parameter. This “director field” represents the average
orientation of the liquid crystal molecules. However, this ap-
proach proves to be inappropriate for BPs as it cannot ac-
count for disclination lines: on these topological defects, the
strength of nematic ordering goes to zero and no average
local orientation can be defined. A suitable description of
BPs is therefore only possible within the framework of the
Landau–de Gennes theory. This employs an order parameter
Q, which is a traceless and symmetric second rank tensor;
this can describe simultaneously the direction and magnitude
of local nematic ordering. The Q-tensor approach also allows
for this ordering to become biaxial; in general the order pa-
rameter can be written as

Q = ql�l� � l�� + qm�m� � m� � −
1

3
�ql + qm�I , �1�

where � denotes the tensorial product. The vector fields l�
and m� are two independent director fields perpendicular to
each other. The quantities ql and qm are called the scalar
order parameters and I is the unit tensor. This representation
confirms Q to be a traceless symmetric second rank tensor
that has five independent components. In many systems the
smaller of the two scalar order parameters is everywhere
very small �if not strictly zero�. A director field n� and a scalar
order parameter q can then be reintroduced within the
uniaxial approximation

Q � q�n� � n�� −
q

3
I . �2�

This now has three independent components to describe both
the strength and the director of the uniaxial ordering. How-
ever, we have no need for the uniaxial approximation in the
numerical approach used in this paper.

The phenomenological Landau–de Gennes free-energy
functional in an external electric field E is given as

F�Q� =� d3r�A0

2
�1 −

�

3
	Q��

2 −
A0�

3
Q��Q��Q��

+
A0�

4
�Q��

2 �2 −
�a

12�
E�Q��E�

+
K

2
��������Q�� + 2q0Q���2 + ���Q���2�
 . �3�

The thermodynamic equilibrium state is the global minimum
of F for any given parameters; metastable phases are local
minima of F. The complete free energy is made up of three
different contributions. The first one �comprising all terms
containing A0� is the bulk free energy, which contains terms
of the Q tensor up to fourth order. The scale factor A0 is
called the bulk free-energy constant, while the parameter �
plays the role of an effective reciprocal temperature. For a
nematogen without chirality �q0=0�, for ��2.7 the isotropic
state gives the global minimum of the free energy, whereas
for �	2.7 the system has nematic order in equilibrium. The
relative local distortion enters the free-energy functional on
the level of first-order gradient terms; throughout this paper
we consider only the “one elastic constant” approximation
�18�, which is a common approach when investigating ge-
neric liquid crystallizing behavior. K is the resulting single
elastic constant; without this approximation, Eq. �3� becomes
considerably more complicated. We have chosen a specific
representation of the gradient free energy �1�, which incor-
porates a gradient-independent part of the bulk free energy to
ensure that it is always positive. The parameter q0= 2�

p0
deter-

mines the intrinsic preferred pitch length p0 of the underlying
cholesteric �i.e., chiral nematic� liquid crystal. Third, the
coupling to an external electric field E� is provided by the
remaining term in Eq. �3�, with �a
0 being the dielectric
anisotropy. This term is linear in the Q tensor and quadratic
in the electric field �the latter is dictated by symmetry for
nonferroelectric liquid crystals, as considered here�.

For the purposes of finding local minima of F it is suffi-
cient to ignore fluid flow and momentum conservation, in-
stead taking the tensor order parameter Q to obey the fol-
lowing �purely relaxational� equation of motion:

�Q

�t
= �H . �4�

The molecular field H is defined as the functional derivative
of the Landau–de Gennes free-energy functional Eq. �3� with
respect to the order parameter, and therefore it vanishes in
equilibrium. It is specifically given by

H = −
�F
�Q

+
I

3
Tr� �F

�Q
	 . �5�

The parameter � is a rotational diffusion constant. �Note that
in practice Eq. �4� is supplemented by an additional dynami-
cal update rule for a so-called “redshift” factor described
below.�
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It is convenient to render the free-energy functional Eq.
�3� dimensionless. This gives rise to the following minimal
set of parameters on which phase behavior can depend:

� =
27�1 − �/3�

�
, �6�


 =�108Kq0
2

A0�
, �7�

e2 =
27�a

32�A0�
E�E�. �8�

Note that the cholesteric pitch parameter q0 is used in the
nondimensionalization of lengths; clearly this works only for
nonzero q0 which we from now on assume. �There are no
BPs for achiral molecules with q0=0.� The quadratic term of
the dimensionless bulk free energy then becomes propor-
tional to the reduced temperature �, whereas the magnitude
of the gradient free-energy term is proportional to 
, the
chirality. Note that the chirality 
 expresses a ratio between
the gradient free-energy and the bulk free-energy terms and
is a measure of how much twist the system wants to have.
The parameter e is an effective field strength.

The free-energy functional Eq. �3� yields a highly compli-
cated free-energy landscape. Although the equilibrium state
for each � ,
 ,e is uniquely defined by the functional, it is not
generally possible to determine these states by any analytical
minimization procedure. An exception is the limit of infinite
chirality, where the bulk as well as the external field free-
energy terms become negligible compared to the gradient
free energy and an analytical solution can be found. While
this limit of infinite chirality is hardly relevant for a real-
world understanding or experiments, the topological charac-
ter of the equilibrium defect structure in this limit is often
unaltered upon reducing chirality—so long as the unit of
length �related to q0� is rescaled appropriately. Therefore,
these analytical solutions offer a useful starting point for nu-
merical solutions of the relaxational dynamics: one can ini-
tialize the runs at finite chirality with the solution that is
already known for the infinite chirality limit. The chosen
dynamics will relax this structure toward a local free-energy
minimum; we then compare the minimized free energy with
those found from competing starting structures to find the
best possible local minimum among the ones corresponding
to the topologies which we have considered.

B. Initial conditions

In this work we consider four such structures, alongside
the isotropic phase, the �para-�nematic phase, and the stan-
dard uniaxial configuration for the cholesteric state: BPI,
BPII, H2D, and H3D �in this last case we consider two pos-
sible starting conditions labeled H3D

a and H3D
b �. In each case

the relevant infinite-chirality expression was taken as initial
conditions. For BPI we used

Qxx � − 2 cos�q0�y�sin�q0�z� + sin�q0�x�cos�q0�z�

+ cos�q0�x�sin�q0�y� ,

Qxy � �2 cos�q0�y�cos�q0�z� + �2 sin�q0�x�sin�q0�z�

− sin�q0�x�cos�q0�y� ,

Qxz � �2 cos�q0�x�cos�q0�y� + �2 sin�q0�z�sin�q0�y�

− cos�q0�x�sin�q0�z� ,

Qyy � − 2 sin�q0�x�cos�q0�z� + sin�q0�y�cos�q0�x�

+ cos�q0�y�sin�q0�z� ,

Qyz � �2 cos�q0�z�cos�q0�x� + �2 sin�q0�y�sin�q0�x�

− sin�q0�y�cos�q0�z� , �9�

where q0�=�2q0. For BPII we used

Qxx � cos�2q0z� − cos�2q0y�, Qxy � sin�2q0z� ,

Qxz � sin�2q0y�, Qyy � cos�2q0x� − cos�2q0z� ,

Qyz � sin�2q0x� . �10�

For the hexagonal two-dimensional BP, abbreviated as H2D,
we used

Qxx � −
3

2
cos�q0x�cos��3q0y� ,

Qxy � −
�3

2
sin�q0x�sin��3q0y� ,

Qxz � �3 cos�q0x�sin��3q0y� ,

Qyy � − cos�2q0x� −
1

2
cos�q0x�cos��3q0y� ,

Qyz � − sin�2q0x� − sin�q0x�cos��3q0y� . �11�

Finally, there are two possible hexagonal three-dimensional
BPs identified in Ref. �13�, which were found to be stable in
the case of positive dielectric constant which we consider
here. For the first one, abbreviated as H3D

a , we used

Qxx � −
3

2
cos�q0x�cos��3q0y� +

1

4
cos�q0z� ,

Qxy � −
�3

2
sin�q0x�sin��3q0y� +

1

4
sin�q0z� ,

Qxz � �3 cos�q0x�sin��3q0y� ,

Qyy � − cos�2q0x� −
1

2
cos�q0x�cos��3q0y� −

1

4
cos�q0z� ,

Qyz � − sin�2q0x� − sin�q0x�cos��3q0y� . �12�

The starting condition for the second three-dimensional hex-
agonal phase, abbreviated as H3D

b , is the same as the one used
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for H3D
a , with the difference that all terms depending on ei-

ther x or y �or both� have the opposite sign.
In order to calculate the phase diagrams in the three-

dimensional parameter space spanned by �, 
, and e2, we
follow the evolution of the free energy for the different con-
figurations toward their �in general metastable� equilibria by
solving Eq. �4�. Once the Q tensor reached a stationary state,
we compare the free-energy densities of the various struc-
tures and identify the lowest one as giving the true equilib-
rium. As already mentioned, this ignores the possibility of
still lower values being achieved by phases that we have not
considered, of which the most relevant are probably BPX
�tetragonal� and BPIII �mentioned further below�. In inter-
preting the phase diagrams shown below, the reader should
bear in mind that their validity is thus restricted to the eight
phases �isotropic, nematic, cholesteric, BPI, BPII, H2D, and
the two H3D phases� detailed above. We have restricted to
these phases in line with the previous literature �2,13�: the
introduction of other topologies may therefore lead to
changes in this phase diagram.

An additional limitation to our work is as follows. We
have already stated that the pitch parameter 
 �via q0� sets
the preferred length scale for BP structures. However, the
dimensionless number that relates the BP unit cell to q0 is not

known a priori but must be found as part of the free-energy
minimization. In numerical work, however, one can only
simulate an integer number of unit cells within a periodic
simulation domain. The procedure is then to fix the periodic
domain but rescale the size of the physical volume that it
represents by a so-called redshift factor. One then finds the
redshift that gives the lowest free energy as part of the dy-
namical minimization. For a completely general disclination
lattice one requires an independent rescaling of each spatial
dimension. For simplicity we here assume a single redshift
factor to govern all three dimensions �i.e., we assume a “cu-
bic redshift”�. This is in line with previous literature practice
�2,3,13,23� and it is the best we can currently do: an aniso-
tropic redshift would effectively require a separate simula-
tion for each aspect ratio chosen and this would not be fea-
sible with our current computational power. The assumption
of a single redshift is exact for BPI and BPII only so long as
these remain strictly cubic structures. In the presence of a
field, both should acquire a tetragonal distortion which we
cannot allow for; however, this effect is thought to be small
�2�. The two H3D structures are handled exactly only if the
chosen aspect ratio of the unit-cell box �which, for a cubic
finite difference grid as used here, must be rational� coin-

(a) (b)

FIG. 1. Phase diagrams in chirality-temperature plane for e=0 as found within our approach �left� and in Ref. �2� �right�. Typically,
redshift values for BPI were smaller than for BPII; e.g., at �=0, for 
=0.55 and 
=1.1 BPI was found to be stable, with a redshift r equal
to, respectively, r=0.7 and r=0.76; while for 
=1.4 BPII was stable and r=0.88.

(a) (b)

FIG. 2. Phase diagrams in chirality-temperature plane for e=0.2 as found with our approach �left� and in Ref. �2� �right�. Redshift values
were typically smaller for BPI than for BPII, and smaller for cubic blue phases than for hexagonal ones: e.g., for BPI at �=0, and 
=1.1,
r=0.82; for BPII at �=0 and 
=1.4, r=0.89; for H2D at �=0.95 and 
=0.9, r=0.96; for H3D

a at �=0.9 and 
=0.9, r=0.935; for H3D
b at �

=0.8 and 
=0.9, r=0.91. Note that for smaller values of e we reproduce electrostriction and the redshift decreases albeit very slightly in
agreement with previous theoretical and numerical literature �6,23�.
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cides with the true one. Again, the error with our chosen
value �26/15, see below� is expected to be minor.

It is useful to briefly sketch how the algorithm to deter-
mine the redshift works. The method we use was originally
proposed in Ref. �15�. The free-energy functional Eq. �3�
comprises terms up to quadratic order in gradients of the Q
tensor: upon a rescaling of the unit-cell dimension, L→L /r,
it is easy to see that the gradient terms are rescaled by a
factor of r per derivative. Therefore, if we rescale L→L /r,
the new free energy becomes

f�Q� = r2A��Q2� + rB��Q� + C . �13�

The scaling factor r� which minimizes the functional is then
simply

r� = −
B

2A
. �14�

This observation provides a simple recipe to determine the
redshift at every time step.

C. Numerical aspects

Here we briefly present the computational details of our
work. The size of the simulation boxes was Lx=Ly =Lz=32
lattice sites for the cubic BPs BPI and BPII and for the cho-
lesteric phase. To accommodate the hexagonal BPs we chose

boxes of Lx=52, Ly =Lz=30 lattice sites for H2D �although a
cubic box would do in this case� and Lx=Lz=52, Ly =30
lattice sites for the two H3D structures. These values were
chosen as the closest approximation to the ratio 1:�3 which
admits a “perfect” hexagonal lattice such as the hcp structure
of hard spheres. �As mentioned above, computational limita-
tions did not allow us to explore different values of this
aspect ratio parameter, which might be somewhat different
for the true structure, even at e=0.� The helical pitch was set
to 16 lattice sites for the cubic BPs and for the cholesteric
phase, and to 15 lattice sites for the hexagonal BPs. For BPI
and BPII we generally simulated a box containing eight unit
cells to check for any �large scale� field-induced reconstruc-
tion; for the hexagonal BPs we used a single unit cell. As
initial configurations we used a simple uniaxial helix for the
cholesteric phase together with the infinite chirality solutions
�Eqs. �9�–�12��. The equation of motion of the order param-
eter Eq. �4� was solved by using a finite difference scheme
�26� and a rotational diffusion constant �=0.3 in simulation
units. At each time step, the value of the redshift, equivalent
of the optimal scaling factor r�, was computed. This requires
little extra calculation as the quantities A and B �see Eqs.
�13� and �14�� are needed for the free energy. Once we know
the value of r�, the unit cell needs to be “rescaled.” Instead of
changing the actual simulation cell to be simulated, which
would be inefficient and inaccurate, we rescale the elastic
constants and q0 by 1 /r� and r�, respectively. Typical runs to
reach equilibration required 25 000 time steps. At the end of
the run we compared the free-energy densities in order to
determine the equilibrium phase as the one with the lowest
free-energy density. To determine the onset of the nematic
phase a visual check of the director field was performed.

III. RESULTS

A. Phase diagrams

In this section we present the phase diagrams obtained for
cholesteric blue phases in the presence of an electric field. To
validate our simulations, we first checked the field-free case,
which was published in Ref. �15�, using a code similar to
ours �see also Ref. �14� for a version without the variable
redshift�.

FIG. 3. Phase diagram in chirality-temperature plane for e
=0.3.

(a) (b)

FIG. 4. Phase diagrams in field strength-temperature plane for 
=1.0 as found with our approach �left� and in Ref. �2� �right�. Note that
change in scale for �.
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The left panel curves in Fig. 1 were found to agree well
with previous LB work �14,15� except for minor deviations
at the BPI-BPII boundary which could be explained by a
slight difference in accuracy used. A few general remarks are
in order to relate these phase diagrams to experimental ones
as well as to previous analytical predictions. At odds with the
phase diagrams seen experimentally, such as the ones shown
in �8�, another BP known as BPIII or the “blue fog” is miss-
ing. In experiments, the BPII region is entirely enclosed be-
tween BPI and BPIII, while in Fig. 1 it emerges as a region
which is open toward higher chiralities. BPIII is believed to
be an amorphous BP, which is stable at higher chiralities and
is thermodynamically distinct from the others �8,27,28�. Al-
though its structure is still a subject of discussion and has not
been fully understood yet, there is some evidence that it
might be closer to BPII than to the isotropic phase �8�. For
theoretical attempts to understand the structure of BPIII see,
e.g., Refs. �29–31�. In principle our numerical approach does
allow us to study large systems in regions in parameter space
for which BPIII is expected, so that this limitation can be
removed at the cost of much more expensive simulations.
�These must be many times larger than any shown here, so as
to contain many cells of the aperiodic structure without
strong finite-size effects.� We accordingly defer our investi-
gation of BPIII to a future publication �32�.

It is interesting to compare our approach to an older real-
ization of the Landau–de Gennes theory �2,3,12�. Within this
approach the existence of field-stabilized hexagonal blue
phases was first predicted. As mentioned in Sec. I, the major
drawback within this older framework was that, due to com-
putational limitations at that time, the Q tensor had to be
expanded in a Fourier series comprising several harmonics
but only the m=2 helicity mode. This simplification leads
to the result that the last elastic term in Eq. �3� does not
contribute to the phase diagram, which we believe is at
the root of the quantitative discrepancy with our simulations.
As a consequence the semianalytical theory found the incor-
rect sequence of blue phases in the phase diagram. These
earlier results are displayed in the right panel of Fig. 1. Re-
markably, our approach shows instead the correct sequence
�cholesteric/BPI/BPII� beneath the boundary to the isotropic
state. Furthermore, in the earlier approximate approach BPII
appears adjacent to the cholesteric phase and BPI occurs at
considerably lower temperatures than in the full numerical
phase diagram reported here and in Refs. �14,15�. Another

important aspect is that the O5 structure, which is predicted
theoretically �see, e.g., Ref. �12�� but not observed experi-
mentally so far, is relegated to higher chiralities than the
ones considered in our phase diagrams. For a long time
these issues cast some doubt on the appropriateness of the
Landau–de Gennes theory for describing blue phases, but it

(a) (b)

FIG. 5. Phase diagrams in field strength-temperature plane for 
=1.5 as found with our approach �left� and in Ref. �2� �right�.

(a)

(b)

FIG. 6. �Color online� Hexagonal-2D BP in equilibrium state at
�=0.75, 
=1.5, e=0. Each tube contains a disclination line.
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is now clear that this functional is actually in good qualita-
tive agreement with experiments and that the inconsistencies
with observations were essentially a drawback of the ap-
proximations previously employed.

We turn now to the role of applied fields, e�0, which
forms the main focus of the current work. Figures 2 and 3
show phase diagrams in the chirality-temperature plane for
increasing field strengths e=0.2 and e=0.3. We can identify
three main effects of the external field on the phase bound-
aries. First of all, in the region where the isotropic phase
appeared in the field-free case, the system becomes oriented
under the influence of the external field, forming a parane-
matic phase �N�. This applies as well for the low-chirality
part of the ordered region, where a nematic phase now ap-
pears in place of the cholesteric phase. For increasing field
strengths the low-chirality nematic-cholesteric phase bound-
ary and the cholesteric phase itself both move toward the
right-hand side of the phase diagram, i.e., to higher chirali-
ties. Second, increasing the value of the electric field leaves
the BPI-BPII phase boundary almost unchanged, an interest-
ing feature which has also been observed in experiments

�24�. The extent of the cholesteric phase is more or less
retained. The BPI region therefore gets overtaken by the cho-
lesteric phase and its phase boundaries move toward lower
temperatures. Finally, very close to the BP-nematic boundary
a pocket of hexagonal blue phases opens up. The right panel
in Fig. 2 displays where Hornreich et al. �2� predicted these
stable hexagonal BPs at the same field strength. Our results
again suggest that their theoretical approach works well in
terms of the general location of these phases, but quantita-
tively it suffers from the limitations of the approximations
used. Our more accurate numerics show that while a transi-
tion from the H3D phases to H2D can arise under increasing
field strength �see Fig. 4 below�, the series of transitions
most often observed is H3D

b →H3D
a →H2D. We further predict

that the boundary between H3D
b and BPII, the closest among

the cubic BPs, should be straight both in the �
 ,�� plane.
Finally, we confirmed the observation from earlier work that
H2D is closer to the nematic phase with respect to the other
hexagonal phases: this is perhaps expected as H2D has a sym-
metry plane perpendicular to the field direction and its char-
acter is therefore closer to that of a nematic than that of the
other BPs. As the stability region of the O5 structure is out-
side the chirality range we considered at zero field, we have
not pursued its study further at nonzero field �we expect an
electric field to destabilize it, as happens with the other cubic
phases�.

(a)

(b)

FIG. 7. �Color online� Hexagonal-2D BP in equilibrium state at
�=0.75, 
=1.5, e=0.3.

(a)

(b)

FIG. 8. �Color online� Hexagonal-3Da BP in metastable state at
�=0.6, 
=1.5, e=0.
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Another way to visualize the phase behavior, especially to
determine the experimentally relevant critical field strength
for the switching into the nematic state, is to perform cuts
through the � ,
 ,e parameter space for selected chiralities

. Figures 4 and 5 show phase diagrams in the field-
temperature plane for 
=1.0 and 
=1.5, respectively. A
comparison with the semianalytical calculations of Ref. �12�
shows that their phase boundaries are roughly in the same
place as ours, except that a BPI phase is entirely missing in
the relevant parameter region. The near horizontal BPI-BPII
boundary seen experimentally in �24� is very well repro-
duced in our findings.

B. Visualization of the BPs

One of the most common ways to characterize the struc-
ture of liquid crystals is to visualize their local order, e.g., via
their director field. Within the Q-tensor theory a director can
be defined according to Eq. �2� as the normalized length
vector which belongs to the largest eigenvalue of the Q ten-
sor. However, as the preferred configuration in BPs is an
arrangement of double twist cylinders involving a highly
complex network of disclinations, it is almost impossible to
visualize their structure in more than two dimensions in this
way. Perhaps the clearest alternative is then to show the de-

fect structure itself, which has become the usual way to por-
tray BP structures. In our simulations, this can easily be
achieved by setting a threshold for the scalar order parameter
q �defined as the maximum eigenvalue of the tensor order
parameter� and imaging the resultant isosurface, which di-
vides “defect” �low q� from “nondefect” �high q� zones. Al-
though rather simple, this method works remarkably well
and we use it here due to its simplicity of implementation.
The following Figs. 6–9 show therefore isosurfaces of the
scalar order parameter q.

Figure 6 represents a unit cell of the hexagonal two-
dimensional BP H2D in the field-free case e=0 at �=0.75,

=1.5. The isosurface corresponds to a value q=0.11. This
is a metastable configuration, because the H2D phase is only
found to be the equilibrium phase for fields e�0.3. Clearly
recognizable is the hexagonal arrangement of the disclination
lines. These are oriented along the z direction, which is the
direction of the applied external field. �With a field on, nei-
ther of the hexagonal BPs could be maintained with discli-
nations perpendicular to the field.� Note that a unit cell of the
hexagonal structures carries a full turn of the director when
one passes through it along the x or y direction, in contrast
with a half turn in the cases of the cubic blue phases �this can
be seen, e.g., from checking the periodicity of the tensorial
order parameter in Eqs. �9�–�12��.

If the external field is switched on, as shown in Fig. 7, the
regions with low order become slightly larger and the discli-

(a)

(b)

FIG. 9. �Color online� Hexagonal-3Da BP in equilibrium state
at �=0.5, 
=1.25, e=0.3.

(a)

(b)

FIG. 10. �Color online� Hexagonal-3Db BP in metastable state
at �=0.5, 
=1.25, e=0.
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nation tubes facet. The magnitude of the order parameter at
its maxima is found to be larger than in the field-free case.

The situation is more complicated for the hexagonal
three-dimensional BPs, H3D

a and H3D
b . Figure 8 shows a

metastable example of H3D
a at �=0.6, 
=1.5, and e=0; one

can readily recognize a hexagonal arrangement if viewing
along the z direction, i.e., perpendicular to the xy plane.
However, when viewed from other directions the structure
looks quite intricate. The general appearance, but not the
topology, of the structure slightly depends on the value of the
threshold of the scalar order parameter q; we have chosen a
threshold of q=0.15.

Figure 9 shows the same phase with external field. The
defect regions along the field direction merge and increase in
their extent. Similarly, in the xy symmetry plane the domains
with higher order around the center of the voids increase in
size.

Figures 10 and 11 instead show the other 3D hexagonal
phase, H3D

b , both without and with a field. Again the former
configuration is metastable, while the latter is stable. With
respect to H3D

a , the disclination lines making up the H3D
b

network do not merge at any point �at least for the values of
the threshold, chosen, again q=0.15�. These lines are twisted
and arranged onto parallel planes, the orientation of neigh-
boring planes being about 60° consistently with the overall
hexagonal symmetry. When a field is applied and the H3D

b

phase is stable, the disclinations twist up �this is more evi-
dent when viewed in a direction perpendicular to the xy
plane—compare the top panels of Figs. 10 and 11�.

The result that the BPI-BPII phase boundary in Figs. 4
and 5 remains almost constant with increasing field strength
�before the system enters first the cholesteric and then the
nematic phase� has its counterpart in the near constancy of
the disclination network of these structures as the field is
varied. Indeed the cubic BPs appear to be much more stable
than the hexagonal BPs and are hardly deformed by the in-
fluence of the external field. The top picture in Fig. 12 gives
the isosurface q=0.22 of the order parameter in BPI, whereas
the picture at the bottom shows the isosurface q=0.15 in
BPII. The lighter cyan surfaces depict the field-free case,
while the darker magenta parts show results for the field
strength e=0.3. It is clear that the disclination network
changes only slightly and the isosurfaces are only slightly
displaced in the direction of the external field. �Recall, how-
ever, that our single-redshift approach excludes any aniso-
tropic distortion of these structures that could arise at high
field strengths.�

IV. CONCLUSIONS

We have presented extensive numerical simulations to in-
vestigate the phase diagram of cholesteric blue phases in an

(a)

(b)

FIG. 11. �Color online� Hexagonal-3Db BP in equilibrium state
at �=0.6, 
=1.5, e=0.3.

(a)

(b)

FIG. 12. �Color online� BPI �top, at �=−0.8, 
=1.5� and BPII
�bottom, at �=0, 
=1.5� at e=0 �cyan, light� and e=0.3 �magenta,
dark�.
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electric field. We have considered the case of a positive di-
electric anisotropy and we have for computational simplicity
taken into account only isotropic deformations of the unit
cell for each structure. While this leaves out by necessity
phenomena such as the “anomalous electrostriction” of BPI
�6,16,17�, this is a good starting point, particularly for com-
parisons with the earlier literature which often employed this
approximation.

We confirm in their main qualitative aspects the predic-
tions of Refs. �2,3�, which were found by a semianalytical
approximation which led to the phase diagram being inde-
pendent of one of the elastic constants. These works pre-
dicted that intermediate values of the electric field stabilize
two new hexagonal blue phases, one with two-dimensional
and another one with three-dimensional symmetry. With re-
spect to previous literature, we were able to refine the phase
diagrams in two important ways. First, we find that the blue
phase regions extend to significantly lower values of chiral-
ity than previously estimated. Second, we have established
which of the cubic blue phases, BPI or BPII, is stable for a
fixed value of electric field, chirality, and temperature. At a
given chirality value, we found that the boundary between
BPI and BPII does not appreciably depend on temperature in
agreement with experimental results. Finally, we have seen
that the disclination lattices of the hexagonal blue phases
modify quite strongly as the field is increased, in contrast to
what happens for the cubic blue phases which, up until close

to the transition to the nematic or cholesteric state, are not
greatly affected in structure by applied fields.

To improve further the accuracy of our phase diagrams,
while remaining within the general framework of the
Landau–de Gennes approach, it would be necessary not only
to relax the cubic redshift assumption, but also to go beyond
the one elastic constant approximation. This would allow
further insight into the adequacy of the Landau–de Gennes
theory in quantitatively accounting for the experimental
phase behavior. Meanwhile, our work lays a useful founda-
tion for future computer simulations of blue phases in elec-
tric fields addressing, for instance, the switching dynamics of
blue phase devices. To study dynamics, rather than the equi-
librium phase behavior addressed here, one must however
use the full momentum-conserving equations of motion. To
this end, our finite difference code has already been married
to a lattice Boltzmann approach �20,21� creating a hybrid
code with which we plan to address such issues in the near
future.
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